MATH 2050C Lecture 3 (Jan 18)

[[ Midtern confirmed: Mar 3. 8:30-10:00 am, in-class.]] Goal: IR is a complete ordered field. today Def": (Absolute value) Let a G R. Note: 12130 VaFR  $|a| := \begin{cases} a & \text{if } a > 0 \\ 0 & \text{if } a = 0 \\ -a & \text{if } a < 0 \end{cases}$ Prop: (a) |ab| = |a| 1b1 (b)  $|a|^2 = a^2$ \*(c) Let c > 0. Then lats c <=> - c < a < c  $(d) - |a| \le a \le |a|$ Proof: (a) We exhaust all possible cases from Trichotomy (02). Case 1: Either a or b is O. Then,  $ab = 0 \Rightarrow |ab| = 0$ Also, if a=0, then lal=0 => lal·lbl=0. Same for b=0. So, labl= |allbl=0. Case 2: a>o and b<o. Then, by Prop. last time, ab<0 => labl = -ab. Also,  $a > 0 \Rightarrow |a| = a$  $b < 0 \Rightarrow |b| = -b$  $|a| \cdot |b| = a \cdot (-b) = -ab$ Case 3: aro and bro J Ex: Case 4: aro and bro J Ex: Case 3 Case 5: a < a and b > 0

(b) Take b = a in (a),  

$$a^{3} = |a^{3}| = |ab| = |a||b| = |a| \cdot |a| = |a|^{2}$$
.  
 $b : a^{3} > 0 \forall a \in \mathbb{R}$ .  
(c) Exhaust all cases of a by trichotomy (Ex:)  
(d) Follows from (c) by taking C = |a| > 0.  
Some Useful Inequality:  $|ab_{20} \leq \frac{1}{2}(a+b) \forall a, b \geq 0$   
(2) Triangle inequality:  $|a+b| \leq |a|+|b| \forall a, b \in \mathbb{R}$   
(3) Bernoulli's inequality:  $|a+b| \leq |a|+|b| \forall a, b \in \mathbb{R}$   
(3) Bernoulli's inequality:  $|a+b| \leq |a|+|b| \forall a \geq -4$ . UneN  
Proof: (1) Let  $a, b > 0$ , then  $[a]$ ,  $[b = exist (Assume ther)]$ .  
By previous lemma.  
 $0 \leq ([a - [b])^{2} = ([a])^{2} - 2[a][b + ([b])^{3}$   
 $= a - 2[a][b + b$   
Rearranging gives the detired inequality.  
(2) By (d) above, we have  
 $-|a| \leq a \leq |a|$   $] = (-|a|+b| \leq |a|+|b|$ .  
(3) Induction on N.  
 $\frac{N=4!}{m=4}$ : Trivial since  $(1+x)^{n} = 1+x = (1+N \cdot x, when N=4)$ .  
Assume  $n \geq k$  is true, then for  $n \in k+1$ .  
 $(1+x)^{k+1} = (1+x)(1+x)^{k}$   
 $(2x) \notin V$  N = k

(c) S is bounded if it is both bdd above AND below.

Otherwise, S is unbounded.

Example:  $S := \{ x \in \mathbb{R} \mid x < 2 \}$ Note: There are many upper bds, e.g. 2, 3, 5, 100,  $\sqrt{100}$  etc...  $\Rightarrow S$  is bdd above. But S is NOT bdd below. (Ex: prove it)  $\Rightarrow$  lower bd  $\Rightarrow$  lower bd  $\Rightarrow$  2 3 5 loo x = x + x + y = R

 $\operatorname{Def}^{n}$ : Let  $\phi \neq S \subseteq \mathbb{R}$ .

(a) Suppose S is bdd above.
Then. u ∈ iR is called a supremum (or least upper bound) of S if the following holds:

(i) u is an upper bd of S
(ii) u ≤ v for any upper bd v of S

(b) Similarly. we can define infimum (or greatest lower bound)

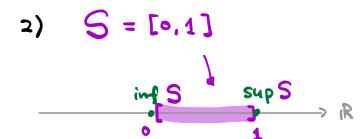
[Notation: inf S or glb.S]
Ex: Write this down.

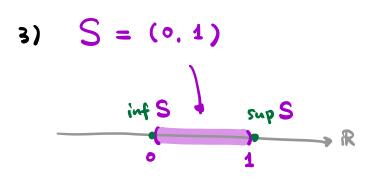
Lemma: SupS, if exists, is unique.

<u>Proof</u>: Suppose there are two  $\mathcal{U}, \mathcal{W} \in \mathbb{R}$  which are supremum of S Therefore,  $\mathcal{U}, \mathcal{W}$  satisfy (i). (ii) in the deft above. By (i) for  $\mathcal{W}$  and (ii) for  $\mathcal{U}$ , we have  $\mathcal{U} \leq \mathcal{W}$  is an upper Ld

Similarly, by (i) for u and (ii) for w, we have  

$$W \leq U \in U$$
 is an upper bd.  
Thus,  $U = W$ .  
Prop: Let  $\phi \neq S \subseteq iR$ . Then  $N = \sup S$  iff  
(i)  $S \leq u$   $V S \in S$   
(ii)  $V \geq 20$ ,  $\exists S' \in S$  st.  $U - \leq S'$   
Picture:  
 $S$   
 $U = S^{U} = S^{U} = S^{U} = S^{U} = S^{U}$   
 $U = S^{U} = S$ 





- sup S = 1 E S inf S = 0 E S
  - sup S = 1 & S
  - inf S = 0 🖨 S